Smart and Connected Communities for Learning

Back to Primers

Authors: Judi Fusco, Julie Remold, Jeremy Roschelle and Patti Schank
Printer-Friendly PDF | Google Doc for Comment | Questions? Contact CIRCL.

Overview

Smart and connected communities for learning (SCCL) leverage networks and technology to foster lifelong, lifewide learning that spans multiple settings or locations. Successful efforts to bridge learning experiences across settings demonstrate marked improvement in (a) participants’ awareness of opportunities for learning in their locale, (b) their ability to engage in and sustain related learning experiences within and across multiple places, and (c) their experience of their community as interconnected in support of learning.

SCCL often happens in more than one place (across communities) and leverages technology (such as cyber physical sensors, Internet of Things, wearable technologies, mobile systems, and big data) to provide continuity across settings. SCCL takes place in both formal or informal learning environments, across neighboring communities, in a “smart city”, or even across the country or world. Another key element of an SCCL is that it addresses needs or solves problems that come from the communities. A goal should be to make “more livable, workable, sustainable, connected communities” with citizens who are able to contribute and continue to improve their world. Smart and connected also involves distributed human and social capital to solve problems. In SCCLs, a team of educators, community representatives, researchers, and others design, implement, and evaluate potential solutions to a problem identified by the community (e.g., local environmental concern, food desert, workforce issues).


Students collecting geo-tagged data in the neighborhood using their mobile phones (from the Community Report).

An example of an SCCL might be an program that links outside of school activities with in-school activities to allow learners to make meaning of or apply what they have learned in school (e.g., use math practices introduced in school to visualize data on a local environmental issue), and reach out to the community to share their learning and potentially impact on a related community issue. The New York Harbor School’s Billion Oyster Project is an instance of this: schools, businesses, nonprofits, and individuals are working together (10 partners) to restore 1 billion live oysters to NY Harbor and restore the ecology and economy of their local marine environment.

As Eamonn Kelly reminds us (Kelly et al., 2016), in working with communities, it is important to remember all of the connections they have, and that they are part of a larger, complex system that involves citizens, a need for privacy, natural disasters, changing politics, and other issues. A change to one part of the system may affect other parts of the system in ways that are unanticipated. The intervention activities undertaken in a community will likely need to be iterative, flexible, and collaborative; unintended consequences should be documented, accounted for, and or addressed as possible.

Research on SCCLs should lead to new “powerful and resilient models and solutions, efficiencies in resources, advances in science and engineering knowledge and practices, and STEM education practices and research” (Kelly, STELAR webinar). Qualitative and quantitative indicators that allow researchers to quantify subjective outcomes including “personal quality of life, community and environmental health, social well-being, educational achievement, or overall economic growth and stability” (NSF DCL) are necessary. Models should include community roles and capacity-building for educators. Finally, SCCLs need to document their progress and share data and methods to help the field build new models and scale impact.

Smart and connected communities for learning is a natural progression and could partner with projects on smart cities as well as work on learning across settings (or “crossover learning”; Sharples et. al., 2015). Gianni & Divitini (2015, p. 30) note that “While the role of technology in Smart Cities has been widely recognized and addressed, there seems to be no established field of research that connects Smart Cities to Learning.” In the article, they go on to outline the learning theories and research methods, types of research and technologies used in articles linking learning and Smart Cities. The also note that Internet of Things is not well explored in the research. The methods and learning theories in the Smart City Learning literature could inform SCCL. What seems to make SCCL distinct from Smart City Learning is SCCL’s focus of connecting people across settings to enhance learning.

Related Work

The ideas behind SCCLs come from the growing body of research on smart cities and from research on the relationship between learning across settings.

Smart Cities. As populations continue to increase in urban areas, with a projected 70% of the population of the world concentrated in cities by 2050, there is a huge challenge, need, and opportunity to make cities “smart.” Smart Cities work began around 2005, but the definition of what “smart” means is still being debated (Angelidou, 2015). Many of the approaches include a focus on energy-efficiency for green cities, smart technologies to improve or monitor water use or conditions, transportation options that are more convenient and accessible, urban manufacturing, and urban farming to improve housing, jobs, quality of life, and sustainable growth; and security for data and people.

Smart approaches in Smart Cities engage citizens in unobtrusive ways through the Internet of Things, sensors, wearable technologies, and mobile systems, leveraging infrastructure to integrate and use the data across agencies, schools, and informal settings. Nam and Pardo (2011) discuss three dimensions: technological (the integration of infrastructures and technology-mediated services), human (social learning for strengthening human infrastructure), and institutional (governance for institutional improvement and citizen engagement). Buchem and Pérez-Sanagustín (2013), take a humanistic perspective where smart cities are thought of as ecosystems that include technologies and technological infrastructures but go on to support the transformation of people into smart, engaged citizens who are learning and participating. The focus on people is purposeful; if just a technological focus is taken, it may result in passive people who live in the city rich with technological infrastructure. People are crucial for solving societal, environmental, political, and economic challenges. The humanistic perspective is essential to help us understand how technology can foster lifelong, lifewide learning across settings in communities.

Learning across settings and connected learning. Through engagement in activities based on personal interest and with others, connected learning strives to foster critical thinking and collaboration between learners and others in the community (Ito et al., 2012). Connected learning can also be seen as context-aware and ubiquitous learning; Yang, Okamoto, Tseng (2008) identify mobility, location awareness, interoperability, seamlessness, situation awareness, social awareness, adaptability, and pervasiveness and key characteristics. Regardless, learners and their interests are the main focus, and digital media and networked systems are used to engage diverse youth in authentic experiences that provide new pathways to learning. Three principles of connected learning are that it:

  1. Is production centered. Because the work is production centered, it allows for active, engaged, hands-on learning. When the production involves digital tools and media, the work can be easily shared, remixed, and curated.
  2. Has a shared purpose. The shared purpose or common goals of the work naturally help foster intergenerational and cross-cultural interactions with experts and interested others; artistic expression, civic projects, or other collaborations or competitions are ways of creating meaningful shared purposes.
  3. Is openly networked. Openly networked means that youth can more easily make connections to resources and cross boundaries between school and informal settings with their work.

Connected learning tries to create multiple points of entry to meaningful participation in areas of youth interest to help prepare youth for both formal work and a social life that includes civil society, family, and community life. Connected learning aims to be at the intersection of youth personal interests, academic focus of schools, and peer culture, connecting these three areas purposefully and selectively to further learning goals (related to the 3 principles above) by (a) connecting youth with resources in different settings and with institutional support, (b) helping them make connections from their interest to academic relevance, and © helping them make social connections with peers or adults who can further their learning. As Ito and colleagues (2012, p. 76) summarize, “Learning is most resilient when it is linked and reinforced across settings of home, school, peer culture and community.” Technology can help achieve this goal for learning because of the ways it can help connect people, classrooms, community, and home, and help learners create and contribute.

Next »