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I.  Goals and Approach 

This workshop was funded through the “Dear Colleague Letter (DCL): Principles for the Design 

of Digital Science, Technology, Engineering, and Mathematics (STEM) Learning Environments 

(NSF 18-017).” The goal of this workshop was to articulate a transformative vision of future 

STEM learning for diverse learners across domains and settings. We sought to forge a nexus 

among the emerging (a) sciences of learning, (b) assessment, and (c) data-intensive research 

(aka ‘big data’) to formulate frameworks and tools for designing STEM learning environments. 

Taking an equity-first approach for broadening participation through innovative designs, this 

project convened interdisciplinary teams to identify and propose forward-looking 

digitally-augmented STEM environments that bridge formal and informal learning contexts and 

which are inclusively responsive to the needs of every learner.  The white paper articulates a 

future research agenda that could lead to new breakthroughs at the Human-Technology 

Frontier. The open-invitation design workshop, strategically located at Stanford University, and 

dissemination through a public website and community outreach activities at key conferences 

in which these scholarly communities convene was designed to ensure broad awareness of and 

access to these models, tools, frameworks, design principles, and research priorities for 

educators, researchers, and technologists. 

The workshop was designed to construct needed new collaborations with the learning 

sciences, assessment, and computer science communities to design integrative STEM learning 

environments with robust in-process measures of adaptive learning that address key aspects of 

deeper learning, with a strong focus on learning that is NOT limited to a single setting or STEM 

subject—expanding across time, across settings, and to related STEM subjects (NRC, 2014).  It 
convened innovators advancing the state-of-the-art in equity-focused, technology- enhanced 

STEM learning, educational data mining and learning analytics (Dede, 2015; Niemi et al., 2018), 

and educational measurement, to develop innovative ways to design and scale for a future of 

integrated STEM learning in an era of big data.  An infrastructure of generative new algorithms 

and knowledge models, psychometric models, and learner pathway models will emerge from 

project activities at the intersection of such interdisciplinary perspectives to transform learning 

and assessment designs by incorporating signals from emerging designs  from multimodal 

learning analytics (e.g. Chan et al., 2020; Davis et al., 2017; Ochoa & Worsley, 2016; Worsley et 

1 
 

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1825070
https://www.nap.edu/catalog/13398/education-for-life-and-work-developing-transferable-knowledge-and-skills


al., 2016) and software for multi-faceted, multi-contextual measurement of social-emotional 

learning indicators and academic competencies. 

The project scope was guided by three questions:  

1. How can learning environments for integrated STEM learning scale successful efforts 

across diverse student populations and bridge formal and informal learning contexts?  

2. What innovative research methods, statistical techniques and modeling formalisms are 

necessary to embed theoretical models in data-driven computational approaches in 

order to capture, characterize and support causal claims about individual and 

team-based learning, especially for complex, multi-source streaming data?  

3. How can multi-domain threaded learning progressions be created for integrated 

learning and assessment of STEM subjects? 

 

II.  Key findings and syntheses on existing state of the art (from workshop participants ) 
1

 

1. Workshop participants provided examples of learning that bridge K-12 formal/informal 

learning (e.g., Barron, 2010; Barron, Gomez, Pinkard & Martin, 2014; Cabrera et al., 2018; 

Sharples et al., 2015) and/or which integrates STEM disciplines and rich data capture in industry 

of learning-on-the-job (Boeing). Participants created a shared repository of key papers on 

workshop-relevant topics (see bibliography below), gave talks drawn from their work that 

connected to o workshop goals, and shared elements of a vision of expansive learning. These 

were considered in cross-specialization group discussions, report outs, and collaborative writing 

processes, resulting in design principles (see below) and associated Learning Environment 

Vignettes. 

2. Interdisciplinary groups from learning sciences, assessment, and computer science 

designed learning environment vignettes comprising integrative STEM learning environments 

over space and time. The centrality of persistence and depth of learning for interest-driven 

learning was common to vignettes from all subgroups. 

3. Participants concurred on their frustrations over the lack of longitudinal STEM learning 

data on interests, achievements, socio-emotional learning (SEL: Osher et al., 2016) across 

domains and settings to support the desired vision of adaptive integrated STEM learning. 

1 Brigid Barron (Stanford), Bryan Brown (Stanford), Tammy Clegg (U. Maryland), Janice Gobert (Rutgers), Shuchi 
Grover (Stanford), Kris Gutierrez (UC Berkeley), James Lester (NCSU), Tim O'Shea (U. Edinburgh), Jonathan Osborne 
(Stanford), Zach Pardos (UC-Berkeley), Roy Pea (Stanford), Jim Pellegrino (UI-Chicago), Anthony Petrosino 
(U-Texas-Austin), Nichole Pinkard (Northwestern), Michael Richey (Boeing), Eileen Scanlon (Open University), Patti 
Schank (Digital Promise), Mark Wilson (UC Berkeley), Marcelo Worsley (Northwestern), Victor Lee (Utah State U). 
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4. Participants’ felt need centered on the importance of advancing the state-of-the-art of 

knowledge mapping which serves to articulate relationships between learning progressions 

across multiple domains. Our highly experienced researchers could not identify any integrated 

STEM learning examples yet of such multi-dimensional alignments of curricula and 

assessments.  Yet weaving together data-driven integrated learning and assessment-for- 

learning-experiences across multiple STEM domains into threaded learning progressions of 

STEM subjects will be vital for learners’ developing adaptive expertise across STEM domains, 

rather than only within-domain learning progress. 

5. There is a general lack of uses in STEM learning research of good/varied measurement 

methods for capturing multiple forms of data from which we can derive socio-emotional 

learning (SEL) constructs (self-management and emotion regulation; self-efficacy, social- 

awareness and empathy; identity; mindsets) related to STEM learning achievements. For 

example, the belief that effort will lead to increased competence defines a growth mindset, 

found to foster greater achievement and well-being across academic, emotional, and social 

domains. Although there are robust SEL Measurement Instruments (Durlak et al., 2011; Dweck, 

2017; Taylor et al., 2017; Yeager & Walton, 2011), what is missing is their usage by researchers 

in relation to STEM learning, much less integrative STEM Learning. Yet innovative research 

methods, statistical techniques and modeling formalisms will be necessary to embed 

theoretical models in data-driven computational approaches for capturing data and 

characterizing and supporting causal claims about individual and team-based learning and SEL 

profiles, especially when inferred from interpretations of complex, multi-source streaming data. 

III.  Insights for Adaptive STEM LEADS 

 

The workshop participants generated a series of principles that best frame the future of 

technology-enhanced STEM education consonant with the workshop vision of forward-looking, 

integrative STEM digitally-augmented learning environments that bridge formal and informal 

learning contexts and which are responsive to the needs of every learner.  These principles 

reflect the need to merge best practices in teaching and learning (Darling-Hammond et al., 

2019) with innovative technology (Baran, 2014; Clark & Mayer, 2016). These principles 

included: (1) Figure-Ground Flip Principle, (2) Measurement Principle, (3) Social and Generative 

Learning Principle, (4) Distributed Expertise Principle, (5) Learning Empowerment Principle, and 

(6) The Human-Virtual Agent (VA) Interaction Co-Evolution Principle. Together each of the 

principles described below reflected the workshop participants’ vision of how learning 

technology can improve with a careful reconsideration of ways to integrate technology into 

learning spaces with a reinvigorated vision of the dynamic nature of learning  across disciplines 

and contexts. 
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1. Figure-Ground Flip Principle: One of the first considerations to be made in the 

integration of STEM education technology involves the need to broker the relationships 

between technology and real-world experiences (Barron & Darling-Hammond, 2010; 

Dawley & Dede, 2014), in other words, to socialize the knowledge transfer problem 

(Pea, 1987). Effective STEM education technology must carefully use the real-world as 

locale to ground sites for learning: Nasir and colleagues highlight how, “Often, people 

can competently perform complex cognitive tasks outside of school, but may not display 

these skills on school-type tasks” (Nasir, et al., 2014, p. 491).  As technology brings real 

world STEM inquiry into schools in relation to real-world application and utility, students 

will be provided opportunities to incorporate telepresence, virtual labs, augmented 

reality, and virtual reality and agent-based modeling (Blikstein, 2012; Wilensky & Rand, 

2015) as a means to better understand their lived experiences and real-world 

phenomenon. While learning with simulations and models of phenomenon is useful, 

learning which situates new technologies in real-world inquiry experiences must emerge 

as a priority (e.g., Blikstein, 2012; Lee & Drake, 2013; Pea, et al, 2011; Sharples et al., 

2015). 

2. Measurement Principle: As new technologies emerge, these technologies must 

incorporate the capacity not only to make assessments-of-learning, but to broadly and 

effectively serve to support assessments-for-learning (Gerard et al., 2015; Gobert et al., 

2018; Huda et al., 2018; Kippers, Wolterinck, Schildkamp, Poortman, & Visscher, 2018; 

Pellegrino, diBello & Goldman, 2016; Yin, Tomita, & Shavelson, 2014). As back-end data 

analytics continue to provide useful learning information, these assessments must be 

integrated into the STEM technology of the future to allow for real-time assessment and 

iterative refinements of digitally-enhanced instruction (Gaine, Zaidi, Pellegrino, 2018; 

Gerard et al., 2015). Additionally, the measurements principle must be extended to the 

use of long-term performance assessment with technology.  Embedding performance 

assessments in STEM learning technology will enable STEM technology to track and 

support students’ STEM interest and development of their competencies such as inquiry 

and argumentation-based thinking over time (Gobert et al., 2018). As scholarship and 

technology improve in parallel, they must engage in multidimensional measurement 

that incorporates both individual and group assessment practices.  

3. Social and Generative Learning Design Principle: One of the fundamental limitations of 

contemporary STEM technology is a limited incorporation of our scientific 

understanding of learning processes (NRC, 2000, NRC, 2018). As such, emergent STEM 

technology must be designed with the intention of fostering generative student 

learning. Given our knowledge of learning as active, socially constructed, and situated 

(Brown, Collins, & Duguid, 1989), emergent STEM technology must be intentionally 

designed to produce the types of learner engagement that requires them to explain, 
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argue, and share their STEM knowledge between learners, with teachers, and within 

their broader social communities (e.g., Barron et al., 2014; Fields et al., 2017; Litts et al., 

2016), with a social design focus which expands learning opportunities for traditionally 

under-represented students in STEM disciplines (e.g., Calabrese Barton et al., 2017, 

2018; Esmonde & Booker, 2016; Gutiérrez & Jurow, 2016; Martin & Barron, 2016). 

4. Distributed Expertise Principle: As learners engage with STEM technology, the learners 

and participants in their communities must be included as learning agents (Barron & 

Bell, 2015; Brown et al., 1993; Pea, 1994), as ‘actors’ in an actor-network theory of 

learning (Barab et al., 2001). As knowledge is distributed among a dynamic set of 

contributors, STEM technology must carefully integrate expertise from all students and 

communities. Instead of offering a one-way transmission of knowledge, an informed 

conception of STEM technology-enhanced learning will benefit from adopting a 

distributed expertise approach to design. 

5. Learner Empowerment Principle:  Learning is far more than a simple cognitive task. 

Psychologists and sociocultural theorists have called for more expansive visions of how 

learning works (Ambady, Shih, Kim, & Pittinsky, 2001; Gutierrez & Rogoff, 2003; 

Ladson-Billings, 1995; Purdie-Vaughns, Steele, Davies, Ditlmann, & Crosby, 2008). Given 

that reality, a future of STEM technology must apply a more dynamic and 

culturally-inclusive conception of learning and allow technology to foster STEM learning 

agency and self-efficacy for equitable participation. As technology is developed, special 

attention must be paid to ensuring that the  technology supports full inclusivity of 

diversity with respect to gender, race, ethnicity, culture, (dis)abilities, and context. It will 

be vitally important to establish inclusivity of access so that all learners including 

students and teachers with disabilities can benefit from cyberlearning opportunities 

(Burgstahler & Thompson, 2019). The STEM technology of the future must be one rich in 

learning opportunities that allows students to rethink who participates in STEM and 

provides students a sense of belonging that is embedded in the design of the learning 

technology and its uses for building STEM competencies and identities (Cheryan et al., 

2015). 

6. Human-Virtual Agent (VA) Interaction Co-Evolution Principle: Human-VA interactions 

for supporting the development of STEM skills and competencies across settings and 

disciplines. At the dawn of personal computing, Douglas Engelbart established a vision 

of human-machine systems co-evolving with the distinctive strengths of each form of 

intelligence being leveraged (Bardini, 2000). In recent years, virtual pedagogical agents 

have been providing many learning-support-relevant interactive features that can serve 

to backstop human teachers or otherwise support processes for engaging and 

deepening learning (Johnson & Lester, 2018, Mudrick et al., 2017). The aim has been to 
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create intelligent systems that can interact with learners in natural, human-like ways to 

achieve better learning outcomes. 

 

IV:  Tensions & Surprises 

 

The vision of adaptive integrative STEM technology-enhanced learning is one that must be 

approached with respect to the tensions and limitations inherent in taking an ambitious 

approach to improve STEM learning with advanced technologies. The participants outlined six 

primary tensions that must be explored in an effort to reach the idealized goals outlined above. 

1. Tension - Knowledge Integration: Learning progressions have been conceived primarily 

within specific domains only, yet the aim of NGSS-based science and NRC reports (2012a, 

2014b) calls for adopting a more integrated approach to STEM teaching and learning. Given 

that the learning goals should sustain the aim of integrating science learning that weaves 

together disciplinary topics, technology must attempt to successfully walk the fine line 

between mapping learning progressions for linear growth and reflecting a more dynamic 

sense of interdisciplinary learning. For example, we know certain math competencies (e.g., 

proportional reasoning) are required for learning of specific topics and competencies in 

science, but mappings that articulate prerequisites/relationships and their integral 

interconnections are as yet unspecified in any standard, broadly-useful or broadly-used 

manner. As context drives learning, students may arrive with expertise outside of the 

frameworks of learning progression guidelines. As such, technology must balance the 

dueling goals of providing trajectories of cognition with the capacity to identify 

context-specific knowledge that may bridge understanding.  

2. Tension - Capturing and Storing Multimedia Data: A foundational principle described above 

focused on the careful and intentional use of back-end data to build better, more 

adaptively- responsive learning technology (Natriello, 2013). Sensing technology 

developments and expertise spanning a range of socio-technical fields is lowering barriers 

to investigating such interactions in authentic learning and work environments. An inherent 

challenge in these data uses involves the need to store and have real-time access to 

longitudinal data across settings for creating comprehensive learner profiles to better serve 

learning needs. While many agree with the goals of data capture and use to support 

learning, the inherent concerns of data privacy and risks of stereotyping due to labeling 

must be carefully considered as data are increasingly used to build improved learning 

environments (Niemi, Pea, Saxberg & Clark, 2018; Pea, 2014), and run risks of providing, 

without critical reflections, ‘algorithms of oppression’ with discriminatory outcomes, 

reinforcing disempowering biases and stereotypes (Noble, 2018; WEF, 2018). 
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3. Tension - The Inscrutability of the Artificial Intelligence Models:  As technology adopts 

machine learning and artificial intelligence (AI) models, care must be given to how AI is used 

to make specific learning recommendations for learning. While teachers have the capacity 

to engage in differentiation and make real-time decisions about students’ learning needs, 

an emergent use of AI must carefully assess when and how AI databases make 

recommendations for what to learn, when to learn it, and why a learner should be learning 

a given topic. The cyberlearning field would do well to heed the insightful observation that: 

“Effective governance of algorithms comes from demanding rigorous science and 

engineering in system design, operation and evaluation to make systems verifiably 

trustworthy” (Kroll, 2018). 

4. Tension - The Need for Data Interoperability In and Out of School: A limitation of 

contemporary approaches to research is the false division between learning STEM in school 

and learning STEM in out of school contexts. As the STEM education technology of the 

future is conceived, developers and educators must pay more attention to ensuring the 

data that is derived from in school and out of school learning contexts are connected in a 

meaningful way. As back-end databases are employed, they must be done in a manner that 

allows for the integration of learning data collected during software use both in school and 

out of school environments (Behrens et al., 2019). 

5. Tension - The Integration of STEM Teachers in Technology Development.  Years of 

research have implicated a lack of cooperation between teachers and educational 

technology developers as a factor that undermines the adoption and functionality of STEM 

technology.  Increasingly, design-based implementation research is actively engaging 

teachers in design and data-driven redesign efforts to foster effective, equitable learning 

designs (e,g. Leary et al., 2016; Tissenbaum et al., 2012). As educational technology 

improves in the years to come, STEM technology developers and scholars must focus on the 

foundational role that teachers play but which is often ignored by AI in education discourse, 

where ‘adaptive learning algorithms’ tend to neglect the real-time and face-to-face values 

of teachers in student learning. 

V.  Distinguishing near, medium and long-term research priorities 

In their collaborative reflections, workshop participants sought to differentiate distinctive 

temporal levels for fulfillment of aspects of the workshop’s vision, that is, we asked which 

aspects are sufficiently mature to inform near-term design of learning environments 

(*immediate future); which aspects would require additional design and development research 

(**medium-term, 1-to-3 years); and which aspects would require basic or foundational 

research (***longer-term, 3-to-5+years). 
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There were a variety of constructs that workshop groups surfaced as needing specification and 

cumulative knowledge building at each of these three programmatic temporal levels. We now 

describe five goal categories, note the programmatic temporal level for the pursuit of each of 

these goals, and note that some of the subgoals within the five goal categories have more 

future-oriented research needs to fulfill the workshop vision, which we accordingly demarcate 

with ** or ***.  

1. *Construct specification and measurement goals:  

a. The field will need to define central constructs of Socio-Emotional Learning such 

as STEM Interest, STEM disciplinary Identity, STEM Learning Engagement, STEM 

Learning Self-Efficacy, and to develop and refine robust instruments for 

measuring them for domain-integrative STEM learning across learning times and 

locations. 

b. Further advances in weaving the Fabric of Adaptive STEM Learning Environments 

Across Domains and Settings will be achieved by identifying and measuring 

competencies that cross-cut STEM domains (e.g., Abstraction, Modeling, Spatial 

Reasoning, Algorithmic Thinking, Systems Thinking, Critical Thinking, as called for 

in NRC, 2012a). 

2. *Identifying STEM learning interests for students/groups/classrooms and computing 

architecture which enables adaptive recommendations for learning pathways. 

Extensive research indicates the catalytic nature of student interest in a topic for their 

inquiries and depth of learning about it (Azevedo, 2018; Barron, 2006; Renninger & Hidi, 

2017).  Sparked interests for learning drive learning persistence and other consequential 

learning activities such as seeking learning resources, learning guidance and learning 

brokers that can serve these needs (Barron & Bell, 2015; Kafai & Peppler, 2010). 

Therefore, identifying STEM learning interests of students in learning environments is an 

important goal in learning environment design. Accordingly, anytime-anywhere 

integrative STEM learning requires computing architectures which will enable adaptive 

recommendations which can establish personalized learning pathways cued from 

identified learner interests to fulfill the aims of integrative STEM learning for all 

learners. In higher education, Jiang, Pardos & Wei (2019) have developed a novel 

recurrent neural network-based recommendation system for suggesting courses to help 

students prepare for target courses of interest, personalized to their estimated prior 

knowledge background and zone of proximal development. 

3. **Identifying STEM learning interests creates the need for Instrumentation Goals, and 

integrative STEM Learning Progression Mapping Goals.  
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a. **We suggest the value of pursuing the topic of Ubiquitous Interest Sensors, viz. 

how do we capture and make sense of signals of learner STEM interest for 

diverse learners across domains and settings? We presume the technical 

feasibility, if yet-to-be-resolved ethical and data privacy policies, of sensor 

instrumentation of learning environments inside and out of school and of learner 

activities in such distributed environments which employs their personal 

computing devices (e.g., Lee & Drake, 2013). 

b. **Creation of Triggered Learning Pathway Openings based on sensings of learner 

interests:  Presuming the provision of anytime-anywhere integrative STEM 

learning computing architectures, and the establishment of ubiquitous interest 

sensors, the technology-enhanced learning environments should be able to 

recommend learning pathway openings based on the learning interests inferred 

in learner models from data sensed  for the learners interacting with those 

systems. 

c. *Assessments ‘for’ learning progress (tied to topics/concepts in STEM domains 

and related standards) stemming from the nodes achieved in learners’ progress 

through their **Longitudinal Integrative STEM Learning Progression Maps. 

(4) **Defining multi-threaded learning progressions for integrated STEM. Learning progressions 

are the roadmaps seeking to align curriculum, pedagogy, and assessment (Black, Wilson & Yao, 

2011; Wilson, 2009): They demarcate consequential locations on the learning journey from 

novice to expert by characterizing what a learner at each key location on the roadmap knows 

and is able to do. The descriptions highlight what is unique about each location, ensuring that 

differences between locations are emphasized so the transformations in skills and knowledge 

along the learning journey can be recognized. The hope is that by mapping the learning journey 

with such knowledge maps, learning progressions can create a common ground for the 

coordination of the works of curriculum developers, teachers, and assessment designers. Today 

we principally have available studies of learning progressions within STEM domains, as in 

mathematics (Confrey et al., 2013; Lehrer, et al., 2014; Maloney et al., 2014; Sztajn et al., 2012) 

and the sciences (e.g., Alonzo, A. C., & Gotwals, 2012; Berland & McNeill, 2010; Catley, et al., 

2005; Duncan et al., 2009; Duncan et al., 2013; Duschl et al., 2011; Elmesky, 2013). In the case 

of computational thinking (Grover & Pea, 2013, 2018), in addition to theoretical definitions of 

learning trajectories of CT that need to be validated through empirical research (Kong, 2016; 

Rich et al., 2017; Seiter & Foreman, 2013), there have been attempts to define frameworks for 

integration with Science and Math (e.g. Weintrop et al., 2016) and what CT looks like from 

within other disciplines (e.g. Malyn-Smith et al., 2018).  Given both NGSS and Common-Core 

calls for an integrated perspective on STEM learning, integrated learning progressions would 

provide a more dynamic version of how learning happens and arguably foster productive 

learner engagements and leveraging of their learning across STEM domains.  It is unfortunately 
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the case for the workshop vision that multi-threaded learning progressions for integrated STEM 

learning remain to be investigated and refined from future programs seeking to advance such 

empirical and theoretical developments and breakthroughs.  

(5)  ***Integration of virtual companions in human teaching & learning environments (e.g., 

Johnson & Lester, 2018; Mudrick et al., 2017). 
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